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Chapter 1

Introduction

I
n this section we present some preliminary results and definitions
about matrix theory and functional analysis. Some of them are left
without the proof and have the scope to introduce the reader to the
notation and to recall him some useful and maybe known properties.

Definition 1.1 Let K be a field, we shall denote with Mn(K) the vectorial
space of matrix defined over K. Some important subspaces of Mn(K) are Un(K),
PDn(K), Hn(K) with whom we shall indicate respectively the sets of unitary,
positive defined and hermitian matrix.

Definition 1.2 A normed space X is said to be a Banach space if it is complete
with respect the norm. A Banach space H is said to be a Hilbert space if on H
is defined a scalar product that induce the norm.

It is known that any Hilbert spaceH always has an orthonormal base (ei)i∈I.
If the set I is numerable then H is a separable Hilbert space. An important
notion is the so called weak topology.

Definition 1.3 Let X be a Banach space. The space of all the linear bounded
functionals over X is called the dual of X and denoted with X ∗. The space
X ∗∗ = (X ∗)∗ is called bidual of X and X is said to be reflexive if X ∗∗ = X .

Definition 1.4 A sequence (xn)n ⊂ X is said to be weakly convergent to x
if f(xn) → f(x), ∀f ∈ X ∗. A sequence (fn)n ⊂ X ∗ is said to be ∗-weakly
convergent if fn(x)→ f(x), ∀x ∈ X .

Let us introduce the space B(X ,Y) of all the linear continuous maps (or
operator) from X to Y. It is known that if Y is complete then B(X ,Y) is
complete as well. Therefore for any normed space X the dual space X ∗ is a
Banach space (since B(X ,R) = X ∗). Moreover a reflexive space is necessarily a
Banach space.

Let A ∈ B(X ,Y), set

‖A‖ = sup‖x‖61 ‖Ax‖ = sup‖x‖=1 ‖Ax‖ = sup‖x‖6=0
‖Ax‖
‖x‖

it is not difficult to prove that the equalities above are true and that ‖A‖ actually
define a norm on B(X ,Y). Moreover for any A ∈ B(X ,Y), being A continuous,
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there exists kA ∈ R such that ‖Ax‖ 6 kA‖x‖ i.e. A is bounded. Precisely
the two properties are equivalent, in fact it can be shown that a linear map
A : X → Y is continuous if and only if it is bounded. Therefore another
definition for ‖A‖ is ‖A‖ = inf{k : ‖Ax‖ 6 k‖x‖,∀x ∈ X}.

Let V ⊂ H be a closed subset of an Hilbert space. It is well known that
∀x ∈ H, ∃!x1 ∈ V, x2 ∈ V⊥ such that x = x1 +x2 and ‖x−x1‖ = infy∈V ‖x−y‖.
It follows

Theorem 1.5 Let H be a Hilbert space, then H∗ is isometrically isomorphic
to H. In other words for any f ∈ H∗ exists xf ∈ H∗ such that f(y) = (xf , y)
and ‖f‖ = ‖xf‖.

Proof. If such xf exists then clearly ‖f‖ = ‖xf‖. In fact |f(y)| 6 ‖xf‖‖y‖
by Cauchy-Swartz and |f(xf )| = ‖xf‖2. For the existence just observe that
ker(f) ⊂ H is closed. Then fix u ∈ ker(f)⊥. For all x ∈ H set v = f(x)u−f(u)x.
Clearly v ∈ ker(f) then 0 = (u, v) = f(x)‖u‖2 − f(u)(u, x). Now by setting
xf = f(u)u

‖u‖2 we have the thesis. �

1.1 Banach Algebras

Definition 1.6 A Banach algebra A is a Banach space such that ‖AB‖ 6
‖A‖‖B‖ for all the pair of elements A,B ∈ A . A Banach algebra is said to be
a ∗-algebra if it can be defined on A a map ∗ : A → A such that, if A ∈ A
then

(A∗)∗ = A, (λA)∗ = λA∗, A∗∗ = A, (AB)∗ = B∗A∗,

(A+B)∗ = A∗ +B∗, ‖A‖ = ‖A∗‖

Lastly a ∗-algebra is said to be a C∗-algebra if ‖A∗A‖ = ‖A‖2.

Let H be an Hilbert space, then B(H) is a ∗-algebra. In particular if H is
finite and dim(H) = n then H is isomorphic to Cn and B(H) = Mn(C). More-
over, if ‖ · ‖2 is the Spectral norm defined over Mn(C) then ‖A‖22 = ‖A∗A‖2,
that is Mn(C) is a C∗-algebra. Therefore, from now on, if not explicitly speci-
fied, we shall denote the matrix norm ‖ · ‖2 just with ‖ · ‖.

A very important set of functionals over a Banach algebra A is the so called
set of characters of A

Definition 1.7 Let A be a Banach algebra. We denote with Ω(A ) the set of
all the linear (both for sum and product) non-zero functionals of A . Precisely
if φ ∈ Ω(A ) then

φ : A → C, φ(A+B) = φ(A) + φ(B), φ(AB) = φ(A)φ(B)

Ω(A ) is called the set of characters of the algebra A .

It can be proved that the set Ω(A ) is compact (i.e. any sequence in Ω(A )
has a convergent subsequence), and Hausdorff (the limits are unique) under
weak topology (recall that Ω(A ) is a set of functionals).
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A huge quantity of theorems is known for commutative C∗ algebras. One of
the most important is the following

Theorem 1.8 Let A be a commutative C∗ algebra . Then A is isomorphic
with C (Ω(A )), the space of the continuous functions from Ω(A ) to C. In other
words any commutative C∗ algebra is nothing else that the space of continuous
functions over a compact Hausdorff set.

As a consequence if Γn(C) ⊂ Mn(C) is a commutative subset of Mn (i.e.
AB = BA, ∀A,B ∈ Γn) then L(AB) = L(A)L(B), moreover there exists X
compact and Hausdorff, f : X → C continuous and Ψ isomorphism such that
Ψ ◦A = f , Ψ−1 ◦ f = A.

Question 2. Does we know any commutative class of matrices??

Question 3. Does we know any class of matrices that is commutative and C∗?

An important class of operator in B(H), being H a Hilbert space, is the class
of projection operators.

Definition 1.9 A P ∈ B(H) is said to be a projector if P2 = P and P∗ = P.

With the following we characterize such very special class of operators

Theorem 1.10 Let P ∈ B(H) be such that P2 = P and P∗ = P. Then H =
range(P) + range(P)⊥. Viceversa, let V be a closed subset of H. There exists
(vi)i∈I an orthonormal base for V, and a map PV : H → V defined by x 7→∑

i∈I(x, ei)ei such that range(PV) = V and P2
V = PV , P∗V = PV .

Proof. First observe that

ker(P) = range(I − P)

In fact if x ∈ ker(P) then (I − P)x = x i.e. x ∈ range(P), viceversa if x ∈
range(I − P) then ∃y ∈ H st x = (I − P)y =⇒ Px = P(I − P)y = 0, i.e.
x ∈ ker(P). Secondly observe that

ker(P) = range(P)⊥

In fact x ∈ ker(P) ⇒ ∀y ∈ range(P) ∃z ∈ H st Pz = y, but exists also w ∈ H
st (I − P)w = x, therefore (x, y) = ((I − P)w,Pz) = (P∗(I − P)w, z) = (P(I −
P)w, z) = 0 then x ∈ range(P)⊥. Viceversa if x ∈ range(P)⊥ then (x,Py) = 0
∀y ∈ H ⇒ 0 = (P∗x, y) = (Px, y) ⇒ Px = 0 i.e. x ∈ ker(P). Lastly since for all
x ∈ H results x = Px+ (I − P)x we have proved the first implication.

The proof of the inverse implication is analogous, but easier. In fact it is
clear that PV maps x onto its unique projection in V such that ‖x − PV x‖ =
infy∈V ‖x − y‖. Therefore of course PVv = v if v ∈ V and thus P2

V = PV .
Moreover suppose x ∈ range(P)⊥ then 0 = (x,Py) = (P∗x, y) i.e. P∗ = P, while
if x ∈ range(P) ... �

1.1.1 The spectrum

One of the key notions for a Banach algebra is the notion of spectrum. Given a
Banach algebra A let us denote with A −1 the set of the invertible elements of
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A .

Definition 1.11 Let A ∈ A . The set ρ(A) = {z ∈ C | (zI − A) ∈ A −1} is
called the resolvent of A. The set σ(A) = C \ ρ(A) is called the spectrum of A.
The set of all the eigenvalues of A is called the punctual spectrum of A and is
denoted with L(A).

It is important to observe that in general σ(A) ⊇ L(A). In fact λ ∈ L(A) if
and only if (λI − A) is not injective (i.e. ker(λI − A) 6= {0}). While λ ∈ σ(A)
not only if (λI −A) is not injective but also if (λI −A) is bijective. Anyway it
is known that in the case of matrices the two sets coincide.

Another important notion is the spectral radius of an A ∈ A , defined by
r(A) = sup{|λ| : λ ∈ σ(A)}. It is a known, but not easy to prove, that r(A) =
limn→∞ ‖An‖1/n.

Theorem 1.12 Let A be a commutative Banach algebra (i.e. AB = BA,
∀A,B ∈ A ) then σ(A) = {φ(A) | φ ∈ Ω(A )}.

Observe that as a direct consequence we have that if two matrices com-
mute then the eigenvalues of their product are given by the product of their
eigenvalues, i.e. L(AB) = L(A)L(B). In fact if λ ∈ L(AB) then there exists
φ ∈ Ω(Mn) such that λ = φ(AB) = φ(A)φ(B) = νµ being ν ∈ L(A), µ ∈ L(B).
(Is it correct???)

Example 1.13 Let U ⊂Mn(C) be an algebra of simultaneously diagonalizable
matrices by unitary transform, i.e. fixed U ∈ Un(C), U = {U diag(λ1, . . . , λn)U∗ |
λi ∈ C}. Then U is a commutative sub-algebra of Mn(C) and hence L(AB) =
L(A)L(B), ∀ A,B ∈ U .

The example above is not so restrictive, in fact

Proposition 1.14 A sub-algebra Y ⊂ Mn(C) is a commutative unital C∗-
algebra of diagonalizable matrices if and only if there exists a non-singular Y ∈
Mn(C) such that Y = {Y diag(a)Y −1 | a ∈ Cn}.

Proof. One implication is trivial since two elements of Y obviously commute,
are diagonalizable and invertible. Viceversa suppose that A,B ∈Mn(C) com-
mute and are diagonalizable. Let {λi}i, {µi}i be the eigenvalues of A and B,
respectively, and {xi}i, {yi}i their correspondent eigenvectors. Then ∀x ∈ Cn

we have Ax =
∑n

i=1 λiaixi and Bx =
∑n

i=1 µibiyi. Therefore

BAx =
∑

i λiai(x)Bxi =
∑

j

[∑
i λiai(x)bj(xi)

]
µiyj =∑

j

[∑
i µibi(x)aj(yi)

]
λjxj =

∑
i µibi(x)Ayi = ABx

or in other words there exists two diagonal matrices D1, D2 such that AB =
BA = X−1D1X = Y −1D2Y . As a consequence both A and B are diagonalized
by the same matrix. �

Definition 1.15 Let A ∈Mn(C), the set

F(A) =
{

(x,Ax)
‖x‖2

| x ∈ Cn

}
is called the field of values of A.
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It is known and not difficult to prove that L(A) ⊂ F(A).

Proposition 1.16 Let A ∈Mn(C). Then F(A) is a compact subset of C.

Proof. Define ϕA : Cn −→ R by x 7→ (x,Ax) and Tn = {x ∈ Cn | ‖x‖ = 1}.
Clearly ϕA is a continuous function and D1(0) a compact subset of Cn. Moreover
F(A) = ϕA(D1(0)). It follows that F(A) is the image through a continuous
function of a compact set, thus it is compact as well. �

An analogous argument let us to prove that the set of non-singular matrices
is an open set, thus the limit of a sequence of invertible matrices could be a
singular matrix.

Proposition 1.17 The set of invertible matrices is an open subset of Mn(C).

Proof. It is known that det : Mn(C) −→ R is continuous, then det−1(0), the set
of singular matrices, is a closed subset of Mn(C) and its complement is open.
�

It is known that the spectrum has particular characteristics for some special
classes of matrices, but such spectral properties are preserved under a more
general context

Theorem 1.18 Let A be a C∗-algebra with unit and A ∈ A . Then

(i) σ(A∗) = σ(A)

(ii) If A is normal (i.e. AA∗ = A∗A) then r(A) = ‖A‖.

(iii) If P is a projector then σ(P) ⊂ {0, 1}.

(iv) If U is unitary, (i.e. UU∗ = U∗U = I) then σ(U) ⊂ T := {λ ∈ C : |λ| =
1}.

(v) If A is self-adjoint then σ(A) ⊂ R.

Proof. ————- �

Proposition 1.19 Let H be an Hilbert space, U ∈ B(H) and (ei)i∈I an or-
thonormal basis for H. The following conditions are equivalent
(i) U è un isometria biettiva.
(ii) U è suriettivo e (Ux,Uy) = (x, y) per ogni x, y ∈ H.
(iii) (Uei)i∈I is an orthonormal basis for H.
(iv) UU∗ = U∗U = 1.

Proof. (ii) ⇒ (iii) Infatti (Uei, Uej) = δij
1, inoltre per l’ipotesi di suriettività

la famiglia (Uei)i∈I è una base. (ii)⇒ (iv) Osserviamo che

‖U∗Ux‖2 = (Ux,UU∗Ux) = (x, U∗Ux) = (Ux,Ux) = ‖x‖2

ed analogamente (x, U∗Ux) = ‖x‖2 per ogni x ∈ H. Dunque ‖(U∗U − 1)x‖2 =
‖U∗Ux‖2 − 2(x, U∗Ux) + ‖x‖2 = 0, ∀x ∈ H, ovvero U∗U = 1. Allo stesso
modo, per la suriettività di U , ∀x ∈ H, ∃y ∈ H tale che x = Uy, dunque
(x, UU∗x) = (Uy,UU∗x) = (y, U∗x) = (Uy, x) = ‖x‖2. Pertanto gli stessi

1δij indica la delta di Kronecker, che vale 1 se i = j e zero altrimenti.
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passaggi fatti per U∗U permettono di concludere UU∗ = 1. (iv) ⇒ (i) Per
ipotesi esiste l’inverso bilatero di U , dunque U è biettiva ed è un isometria
perchè ‖Ux‖2 = (Ux,Ux) = (x, U∗Ux) = ‖x‖2, per ogni x ∈ H. (i)⇒ (ii) Per
ipotesi U conserva la norma. Allora U conserva il prodotto scalare per l’identità
di polarizzazione.2 Inoltre U è suriettiva per ipotesi. Per concludere proviamo
l’implicazione (iii)⇒ (ii); per ogni x, y ∈ H si ha x =

∑
k akek e y =

∑
h bheh.

Allora (x, y) =
∑

k akbk e

(Ux,Uy) =
∑

k,h akbh(Uek, Ueh) =
∑

k akbk = (x, y)

�

2Ovvero (x, y) = 1
4

P
α:α4=1 α

−1‖x+ αy‖2



Chapter 2

Infinite matrix operators

L
et us consider a separable Hilbert space H over C, and an orthonormal
basis (ei)i∈I, where I is any at most countable set. For any operator
A ∈ B(H) one can naturally define a matrix A = (aij)i,j∈I given by
aij = (Aej , ei). Observe that in the case I is finite B(H) is isomorphic

to Mn(C) and the correspondence operator-matrix is one to one. In this chapter
we are interested in the more general case I countable but not finite. In this
case, obviously, the matrix A associated to A ∈ B(H) is an infinite matrix, and
we can describe the action of A on H by the means of A

Ax =


. . . . . . . . . . . .
. . . a−1,−1 a−1,0 . . .
. . . a0,−1 a0,0 . . .
. . . . . . . . . . . .




...
x−1

x0

...

 =


...
y−1

y0
...

 = y

where (xi)i and (yi)i are the coefficients of x, y ∈ H with respect (ei)i. In fact
A describes exactly the action of A onto every element of the basis (ei)i of H.1

Every operator A ∈ B(H) can be represented by a matrix A as done above, but
is the converse always true? Suppose that A is an infinite matrix with element
in C, A generates a linear bounded operator A on H only if there exists a finite
constant c > 0 such that for every x ∈ H the following hold
(i) The series

∑
j∈I aijxj converges ∀i ∈ I.

(ii) If yi =
∑

j aijxj then y =
∑

i∈I yiei belongs to H.
(iii) ‖y‖ 6 c‖x‖.
In this case, the matrix A and the operator A are substantially the same think,
exactly like the finite-matrices case. Therefore we shall denote both with the
same symbol, failing to distinguish from each other.

2.1 Laurent Matrices

In this section and throughout the rest of the chapter we shall assumeH = `2(I).
Notice that a separable Hilbert space H can always be identified with `2(I)
by the construction described above. In other words for any separable Hilbert

1For the sake of simplicity we denote an element x of H with the same symbol of its infinite
vector of coefficients x = (. . . , x−1, x0, . . . )

7
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space there exists an obvious bijection Ψ : H → `2(I) such that x 7→ {(x, ei)}i∈I.
Therefore the hypothesis H = `2 is not restrictive. Let T = {z ∈ C | |z| = 1},
we denote with µ the translation invariant Radon measure such that µ(T) = 1
and with Lp(T) = Lp(T, µ), for 1 6 p 6∞.

Let us consider a sequence (an)n ⊂ C and associate to it the infinite matrix
. . .

a0 a−1 a−2

a1 a0 a−1 a−2

a2 a1 a0 a−1

a2 a1 a0

. . . . . .

 , (2.1)

the following is a well know result due to Laurent

Theorem 2.1 The matrix (2.1) generates a linear bounded operator on `2(Z)
if and only if there exists a ∈ L∞(T) such that (an)n are the Fourier coefficients
of a, and

a(t) =
∑
n∈Z

ant
n, an =

∫
T
a(ζ)ζ−ndµ(ζ), t ∈ T

Note that since a is bounded on T then a ∈ ∩p>1L
p(T) and hence the Fourier

series above converges to a at least in L2(T). Given a ∈ L∞(T) we shall denote
the matrix (2.1) as L(a) and refer to a as the symbol of L(a).

An important property of a Laurent matrix is that {L(a)}a∈L∞(T) is an
algebra of simultaneously diagonalizable matrices (or operators).

Definition 2.2 Let A ∈ B(H) and M(ϕ) be the multiplication operator on
L2(X , ν) such that f 7→M(ϕ)f = ϕf , (X , ν) a suitable measure space. A is said
to be a diagonalizable operator iff there exists an isomorphism Φ : L2(X , ν)→ H
such that A = ΦM(ϕ)Φ−1. We refer to ϕ as the diagonal function of A.

Remark 2.3 Notice that two multiplication operators always commute and,
as a consequence, the diagonal function of an operator A is not unique. In fact,
for instance, if A = ΦM(ϕ)Φ−1 one can choose any invertible ψ ∈ L2(X , ν),
then A = ΦM(ϕ)Φ−1 = (ΦM(ψ))M(ϕ)(ΦM(ψ))−1 = ΦM(ψ ◦ ϕ ◦ ψ−1)Φ−1,
namely ψ ◦ ϕ ◦ ψ−1 is another diagonal function of A. Finally let us recall that
any normal operator N ∈ B(H) is diagonalized by an unitary transform U ,
moreover a diagonal function of A is the simplest ξ : σ(N)→ C, x 7→ ξ(x) = x,
i.e. N = UM(ξ)U∗.

Given a ∈ L∞(T) we consider the multiplication operator M(a) : L2(T) →
L2(T), f 7→ af and the isometric isomorphism Φ : L2(T) → `2(Z), f 7→ (fn)n

which sends an L2(T) function to its sequence of Fourier coefficients. Then it is
clear that

‖M(a)‖ = ‖a‖∞, ‖Φf‖`2 = ‖f‖L2 , L(a) = ΦM(a)Φ−1,

where the first identity is a trivial computation, the second one is a direct
consequence of the Parseval identity, the last one is not difficult to prove and is
a consequence of the definitions of M,Φ and L. As a consequence we have the
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following two properties for a Laurent matrix L(a):

L(ab) = L(a)L(b), ∀a, b ∈ L∞(T) (2.2)
‖L(a)‖ = ‖a‖∞ ∀a ∈ L∞(T) (2.3)

It is known that that L∞(T) is a C∗-algebra therefore one can consider the
spectrum of a as an element of L∞(T), such compact and non-empty set is
referred to as the essential range of a

σL∞(T)(a) = R(a) =
{
λ ∈ C : µ

(
|a(t)− λ| = 0

)
> 0
}

Observe that in general the essential range R(a) is a proper subset of the range
a(T), obtained removing from a(T) the null-measure sets, and it is closed. In
fact given (λn)n ⊂ R(a) such that λn → λ, modulo reordering and considering
a sub-sequence, we can assume that µ(|a(t)− λn| 6 1

n ) > 1
n , ∀n > 1, therefore

by monotony it follows⋂
n>1

{
µ
(
|a(t)− λn| 6 1

n

)
> 1

n

}
=
{
µ(|a(t)− λ| = 0) > 0

}
,

and thus λ ∈ R(a). Moreover notice that if λ ∈ R(a) then λ ∈ σ(L(a)) then
R(a) ⊂ σ(L(a)), anyway the converse inclusion holds too

Theorem 2.4 Let a ∈ L∞(T), then σ(L(a)) = σ(M(a)) = R(a). Moreover if
0 /∈ R(a) then L(a) is invertible and L(a)−1 = L(a−1).

Proof. It is obvious that σ(M(a)) = R(a) therefore by the above observations
σ(L(a)) = σ(ΦM(a)Φ−1) = σ(M(a)) = R(a). Moreover if 0 /∈ R(a) then a is
invertible as an element of L∞(T) and thus if Id ∈ L∞(T) is the identity x 7→
Id(x) = x, by (2.2) we have I = L(Id) = L(aa−1) = L(a−1a) = L(a)L(a−1) =
L(a−1)L(a). �

2.2 Toeplitz and Hankel matrices

A Toeplitz matrix defined by a sequence (an)n∈Z ⊂ C is a matrix of the form

T =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a−1 a0 . . .
. . . . . . . . . . . .

 . (2.4)

Observe that such a matrix is the bottom-right part of the Laurent matrix (2.1).
As a consequence, if we consider the projection P : `2(Z)→ `2(N) and a function
a ∈ L∞(T), there follows T = PL(a)P . This fact, together with Theorem 2.1,
implies that T define a bounded (linear) operator on `2(N) if (an)n∈Z are the
Fourier coefficients of a function a ∈ L∞(T), in fact

‖T‖ = ‖PL(a)P‖ 6 ‖P‖‖L(a)‖‖P‖ 6 ‖L(a)‖ = ‖a‖L∞(T).

It was proved by Toeplitz that also the converse implication is true, so that we
have
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Theorem 2.5 A Toeplitz matrix (2.4) generates an operator of B(`2(N)) if and
only if there exists a ∈ L∞(T) such that (an)n are the Fourier coefficients of a.
In this case we shall denote the matrix (2.4) as T (a) and refer to a ∈ L∞(T)
as the symbol of T (a).

The observations done above also yield to the following

Theorem 2.6 Let a be the symbol a Toeplitz matrix T (a). Then ‖T (a)‖ =
‖a‖L∞(T).

Proof. We have just observed that ‖T (a)‖ 6 ‖a‖L∞(T). Let us prove the reverse
implication. Let Qn be the `2(Z) projection defined by

(Qnx)k =

{
0 k < −n
xk k > −n

, ∀x ∈ `2(Z)

It is obvious that ‖(Qn−I)x‖ → 0, ∀x ∈ `2(Z) then Qn → I strongly. Moreover
observe that for any x ∈ `2(Z)

(L(a)Qnx)k =
∑

i∈Z ai+k(Qnx)i =
∑

i>−n ai+kxi

therefore QnL(a)Qnx = T (a)x that obviously imply ‖QnL(a)Qn‖ = ‖T (a)‖.
Now by the Banach-Steinhaus theorem we have

‖a‖L∞(T) = ‖L(a)‖ 6 lim inf
n→∞

‖QnL(a)Qn‖ = ‖T (a)‖

and thus we conclude the proof. �

To any sequence (an)n∈Z ⊂ C one can associate two Hankel matrices of the
form

H+ =


a1 a2 a3 . . .
a2 a3 a4 . . .
a3 a4 a5 . . .
. . . . . . . . . . . .

 , H− =


a−1 a−2 a−3 . . .
a−2 a−3 a−4 . . .
a−3 a−4 a−5 . . .
. . . . . . . . . . . .

 (2.5)

An condition analogue to the Laurent and Toeplitz cases can be given on the
sequence (an)n ensuring that H+ and H− define two linear bounded operators
on `2(Z):

Theorem 2.7 The matrices H+ and H− generate a bounded linear operator on
`2(Z) if and only if there exists an f ∈ L∞(T) with Fourier coefficient (fn)n∈Z
such that an = fn and a−n = f−n, for all n > 1, respectively.

Let a ∈ L∞(T) we shall denote with H(a) the matrix H+ we shall refer to a
as the symbol ofH(a). Observe that if i is the ”inverse” function x 7→ i(x) = x−1

then a ◦ i is the symbol defining H−, in fact, recalling that if ζ ∈ T then i(ζ)
is a translation and that µ is a Radon translation invariant measure, we have
a ◦ i ∈ L∞(T) and

a−k =
∫

T
a(ζ)ζkdµ(ζ) =

∫
T
(a ◦ i)(ζ)ζ−kdµ(ζ) = (a ◦ i)k.
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Observe that the sufficient condition of Theorem 2.7 can be easily obtained the
same way we do for the Toeplitz case. Let us show how. Consider the two
orthogonal projections P : `2(Z) → `2(N), Q : `2(Z) → `2(−N) and the so
called reverse identity J defined by (Jx)k = x−k−1. Notice that P and Q are
complementary projections, i.e. P +Q = I, and that J2 = I. It is an intuitive
fact to suppose that H+ and H− are related to the bottom-left and up-right
parts of a Laurent matrix, respectively, and this is actually the case. In fact, it
is easy to observe that

H(a) = PL(a)QJ, H(a ◦ i) = JQL(a)P.

As a consequence we have the desired norm bound: ‖H(f)‖ 6 ‖f‖L∞(T).
Of course the equality can not be obtained as in the Toeplitz case since there

are infinitely many functions in f ∈ L∞(T) such that H(a) = H(f). Anyway
one can show that

‖H(a)‖ = inf{‖f‖∞ : H(f) = H(a)}.

Suppose that we are given a, b ∈ L∞(T), what can be said about the Toeplitz
matrix T (ab)? Unluckily it does not hold the same simple formula obtained for
the Laurent L(ab), but it is not difficult to prove the following

Proposition 2.8 Let a, b ∈ L∞(T), then T (ab) = T (a)T (b) +H(a)H(b ◦ i).

Proof. Let P,Q and J be as defined above. There follows T (ab) = PL(a)L(b)P =
PL(a)PL(b)P+PL(a)QL(b)P = (PL(a)P )(PL(b)P )+(PL(a)QJ)(JQL(b)P ) =
T (a)T (b) +H(a)H(b ◦ i). �

2.3 Approximation methods

We have observed that one can always think to a linear bounded operator A ∈
B(H) as its infinite matrix A. Therefore the problem of solving an operator
equation Ax = b is equivalent to the problem of solving an infinite linear system
Ax = b. Of course one expect that the solution of such infinite system could
be approximated by considering a truncated problem of dimension n. Let us
formalize such concept.

Observe that any matrix A ∈Mn(C) can be thought as immersed into the
whole `2(N), i.e. we can think of A as an infinite matrix whose j-th columns
and rows are null for all j > n+ 1. Let Pn be the projection defined by

(Pnx)k =

{
xk 1 6 k 6 n

0 k > n
, ∀x ∈ `2(N),

denote with `2n = range(Pn) ⊂ `2(N) and with `2 = `2(N), for brevity.

Definition 2.9 Let (An)n be a sequence of n × n matrices and think them
immersed into `2. We say that (An)n is an approximating sequence for some
operator A ∈ B(`2) if An converges strongly to A, that is

‖Anx−Ax‖
n→∞−→ 0, ∀x ∈ `2.
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Let us recall that for a sequence (Wn)n ⊂ B(H) of operators one can consider
at least three different type of convergence: Wn converges uniformly to W iff
‖Wn −W‖ → 0; Wn converges strongly to W iff ‖Wnx −Wx‖ → 0, ∀x ∈ H;
Wn converges weakly to W iff |(y,Wnx)− (y,Wx)| → 0, ∀x, y ∈ H. Notice that
the uniform convergence implies the strong convergence that in turn implies the
weak convergence, exactly as one expect.

Definition 2.10 Given A ∈ B(`2) and (An)n an approximating sequence for
A we say that (An)n is an applicable approximation method for A if

(i) the matrices An are invertible for all sufficiently large n

(ii) the unique solution x(n) ∈ `2n of Anx
(n) = Pnb converges in `2 to the

unique solution of Ax = b.

In this case we write A ∈M(An)n

Observe that given A ∈ B(`2) one can easily construct an approximating
sequence for A by considering (PnAPn)n∈N, what is called the finite sections
method. Let us consider an approximating sequence (An)n for a given A ∈ B(`2)
such that A ∈ M(An)n. Then An are invertible for all n > n sufficiently large
and there follows from the property (ii) that A−1

n converges strongly to A−1.
In fact, for every b ∈ `2 we have 0 = limn ‖x(n) − x‖ = limn ‖A−1

n Pnb− A−1b‖.
It also holds the reverse implication, thus we have another characterization for
a sequence as in Definition 2.10

Proposition 2.11 Let A ∈ B(`2) and (An)n an approximating sequence for
A. Then A ∈ M(An)n if and only if An are definitively invertible and A−1

n

converges strongly to A−1.

Proof. Observe that we only have to show the invertiblity of A..... �

On putting ‖A−1
n ‖ =∞ if An is not invertible, we have

∃n > 1 : sup
n>n
‖A−1

n ‖ <∞⇐⇒ lim sup
n→∞

‖A−1
n ‖ <∞

and we refer to such property as the stability or uniform stability of the sequence
(An)n. Notice that with the above conditions we are requiring the uniform
convergence of the inverses A−1

n to A−1, not only the strong convergence, thus
for a stable approximating sequence (An)n always holds A ∈M(An)n. However
a stable sequence may be not an approximating sequence since the convergence
of A−1

n does not imply the convergence of An. Moreover, notice that the stability
property is an adjoint invariant while the approximating property is not. In fact
it is not difficult to observe that (An)n stable implies (A∗n)n stable, while if (An)n

is an approximating sequence the adjoint sequence may not converges at all. For
instance, consider the shift-forward matrix [Zn]ij = 1 if i = j mod n + 1 and
[Zn]ij = 0 otherwise. Then Zn converges strongly to the shift-forward operator
(x1, x2, . . . ) 7→ (0, x1, x2, . . . ). On the other hand the adjoint Z∗n defined by
[Z∗n]ij = 1 if j = i mod n + 1 and 0 otherwise, does not converges, in fact for
every x ∈ `2n, (Z∗nx)n = x1, ∀n > 1 that is it can not converges to a bounded
linear operator on `2.

The following theorem gives reason to our interest in the concept of stability
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Theorem 2.12 Let A ∈ B(`2) and let (An)n be an approximating sequence for
A. Then A ∈M(An)n ⇐⇒ A is invertible and (An)n is stable.

Proof. The ”if” portion comes easily from what we have seen above. Let us
prove the ”only if” portion....... �

Asymptotic inverse

Suppose we are given a sequence (An)n of finite matrices and consider any
sequence of projections (Pn)n defined above, such that Pn → I, uniformly. The
asymptotic inverse of (An)n is a sequence (Mn)n such that lim supn→∞ ‖Mn‖ <
∞

‖MnAn − Pn‖
n→∞−→ 0, ‖AnMn − Pn‖

n→∞−→ 0.

We have the following

Proposition 2.13 Let (An)n be an asymptotic invertible sequence. Then
(An)n is stable and

A−1
n = Mn +Rn, ‖Rn‖

n→∞−→ 0

being (Mn)n the asymptotic inverse of (An)n.

Proof. Let us set Bn = MnAn−Pn, then for any ε > 0 there exists nε > 0 such
that ‖Bn‖ < ε, ∀n > nε. As a consequence the sequence Pn + Bn is definitely
invertible and A−1

n = (Pn +Bn)−1Mn. Fix an ε > 0, we have ‖(Pn +Bn)−1‖ 6
2ε−1 for all n > nε or rather

lim sup
n→∞

‖A−1
n ‖ 6 2ε−1 lim sup

n→∞
‖Mn‖

that is (An)n is invertible (recall we are assuming ‖A−1
n ‖ = ∞ whenever An is

not invertible). The matrix Rn can easily be obtained by setting Rn = −BnA
−1
n

since
A−1

n = PnA
−1
n = Pn(Pn +Bn)−1Mn

�

2.3.1 The Toeplitz case

Let us now consider the case of Toeplitz operators. We shall denote with
(Tn(a))n the finite section method obtained by PnT (a)Pn = Tn(a). Stability
and approximation properties of Tn(a) strictly depend on the function a. We
have observed in the previous section that Tn(a) always is an approximating
sequence, therefore by Theorem 2.12 we have the implication

(Tn(a))n stable =⇒ T (a) invetible.

This is interesting recalling Theorem 2.12, in fact if we are given a function
a ∈ L∞(T) such that Tn(a) is stable, we easily obtain an applicable method,
since T (a) ∈M(An)n. Unluckily the reverse implication is not true in general,

Proposition 2.14 There exists a function a ∈ L∞(T) such that T (a) is in-
vertible but Tn(a) is not stable.
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This result is fairly recent and this is because the construction of such symbol
a is rather difficult and for a large class of symbols a the invertibility of T (a)
implies the stability of Tn(a), so that T (a) ∈M(Tn(a))n.

This is the case, for instance, of continuous symbols

Theorem 2.15 (Gohberg-Feldman) Let a ∈ C (T). Then

T (a) invertible =⇒ (Tn(a))n stable

and, as a consequence, T (a) ∈M(Tn(a))n.

This is a classical result and they are known at least three way to prove it.

First proof of Gohberg-Feldman theorem. ........... �



Chapter 3

Infinite graphs

I
n this chapter we would try to formalize the idea of describing the web-
graph matrix as the restriction of an infinite matrix being the limit
behaviour of a dynamic increasing set of pages and links. The idea
has origin from the Google pagerank matrix describing the existence

of hyperlinks between the world wide web pages.
The question can be pointed out as follows: consider a simple oriented fi-

nite graph Gn = (V Gn, EGn) defined by a set of enumerated vertexes V Gn =
{1, . . . , n} and a set of oriented edges eij , from i to j, univocally determined by
the ordered pairs (i, j), i, j ∈ V Gn. The number of vertex n, is referred to as
the dimension of the graph. Of course the edge eij does not exist for any two
vertex i and j, moreover the existence of eij does not implies the existence of
eji. To such a graph we associate the adjacency matrix En ∈ Mn(R) defined
by

[En]ij =

{
1 eij ∈ EGn

0 eij /∈ EGn

.

It is well known that such matrix is irreducible if and only if the graph Gn is
strongly connected and that, in this case, Perron-Frobenious theory ensures the
existence of an unique maximal right eigenvector v of En, corresponding to its
maximal eigenvalue ρ(En).

Suppose we are given a graph Gn describing a set of data which is not static,
i.e. the number of objects in the set and the relations that may occur between
them could increase or decrease in time. Let us introduce a equivalence relation
∼ between the graphs by setting G 1

k ∼ G 2
h if and only if k = h. By restricting the

attention to the increasing situation and by considering the graphs modulo the
equivalence ∼, we can identify the sequence of graphs defined by the dynamic
set of data we are considering by (Gn)n∈N. In other words we are assuming that
the dimension of the graph we are considering always increase in time, and we
shall refer to such situation with the symbol G Zn .

The pagerank problem concerns the situation of an increasing non-connected
graphs sequence G Zn , to which is associated a stochastic matrix Pn obtained by
the normalization of the reducible adjacency matrix En. Precisely, consider the
diagonal matrix ∆n defined by (∆n)ii = Enei, i = 1, . . . , n, we set Pn = ∆−1

n En,
were the inverse of ∆n is obtained by inverting only the non-null rows of ∆n

and taking no account of null ones.
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